Methodic aspects of aircraft glide slope correction for prevention of CFIT category accidents during pre-landing descent

Author:

Vorobуev V. V.1,Beliatskaya A. P.1,Supolka A. A.2

Affiliation:

1. Moscow State Technical University of Civil Aviation

2. PJSC "Aeroflot – Russian Airlines"

Abstract

Aviation accidents of the category of controlled flight into terrain in world commercial aviation are included into three "killers" in aviation together with loss of control in flight (LOC-I) and runway excursions (RE). As a result of long-term research of this problem the methods of CFIT risk level reduction, pilot training and retraining programs were developed and put into practice. Also several generations of onboard ground proximity or obstacle warning systems were created (GPWS, EGPWS, TAWS), the disadvantage of which is a passive – advisory type of warnings. The conclusions of the commissions concerning the results of aviation accidents investigations indicate the cases of crew disregard of an alarm of a ground proximity warning system and possibility of a go-around procedure to make a missed approach. Despite the aviation community actions, accidents of this category continue to occur. Therefore, search of new methods and solutions of the controlled flight into terrain problem is necessary. One of the possible ways to resolve this problem is making proximity warning systems active and two-mode operative. The first one is some type of warning to the crew about approaching the boundaries of a safe maneuvering area during approach to land as well as the recommendations to avoid a glide path deviation. The second way is that if the crew members don`t take any actions with a warning on or crew actions are not effective enough, it is necessary to regain a glide slope with temporary pilot disengagement from a control loop.

Publisher

Moscow State Institute of Civil Aviation

Subject

General Medicine

Reference17 articles.

1. Kuminova, А.P., Rukhlinskiy, V.M., Konyaev, E.А. and Kirpichev, I.G. (2019). Modern based training of pilots and three-dimensional indicator of value risk aircraft accidents. Scientific Bulletin of the State Scientific Research Inst itute of Civil Aviation (GosNII GA), no. 29, pp. 135–145. (in Russian)

2. Blaginin, А.А., Sinelnikov, S.N. and Lyashedko, S.P. (2017). State-of-the-art and problems of spatial orientation training of pilots. Aerospace and environmental medicine, vol. 51, no. 1, pp. 65–69. DOI: 10.21687/0233-528X-2017-51-1-65-69. (in Russian)

3. Kelly, D. and Efthymiou, M. (2019). An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017. Journal of Safety Research, vol. 69, pp. 155–165. DOI: 10.1016/j.jsr.2019.03.009

4. Lushnikov, А.S. (2009). Bortovyye radioelektronnyye sistemy obespecheniya bezopasnosti poletov vozdushnykh sudov: uchebnoye posobiye [Onboard avio nic systems of the aircraft flight safety: Training manual]. Ulyanovsk: UVAU GA, 143 p. (in Russian)

5. Blajev, Tz. and Curtis, W. (2017). Go-around decision-making and execution project. Flight safety foundation, 54 p.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3