Evaluation results of the tribological properties of aviation oils for aircraft engines

Author:

Seleznev M. V.1,Gryadunov K. I.1,Balyshin K. E.1

Affiliation:

1. Moscow State Technical University of Civil Aviation

Abstract

The development of modern heat-stressed aircraft engines is a complex process based on the advanced achievements of various branches of science and technology, including chemmotology. Each new generation of aircraft engines imposes stricter requirements on the quality of the aviation oils used to ensure the reliable operation, including engine oil systems, rotor bearings and other components. One of the important factors in reducing friction and wear-out of modern gas turbine engines is the use of high-quality oils with a high level of anti-wear and anti-friction properties which allow engines to operate under various relubrication intervals. In the domestic regulatory and technical documentation, the anti-wear properties of aviation oils are evaluated using a four-ball friction machine according to GOST 9490, and the anti-friction properties are not taken into account. The specified friction machine has a variety of disadvantages. In this regard, the authors evaluated the anti-wear and anti-friction properties of domestic aviation oils using a versatile vibro-tribometer which allows for the operational properties of oils to be researched under the modes that are the most characteristic for the actual operation of aircraft engines compared with parameters of oil tests by a four-ball friction machine. Unlike the four-ball friction machine, the vibro-tribometer design implements a contact - interaction scheme in a “ball-plate plane” friction pair. At the same time, a thermal chamber is installed on this application that provides constant heating of the friction pair and the tested lubricating oils to the required temperature (from 0 to 150 ℃). It has been found that IPM-10 aviation oil possesses the best anti-wear and anti-friction properties, and with an increase in the tested oil temperature, a proportional increase in wear-out in the “ball-plate plane” friction pair occurs.

Publisher

Moscow State Institute of Civil Aviation

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3