Methodology of maintenance of arrival flow integrity based on the characteristics of the permanent reduction mode

Author:

Malygin V. B.1

Affiliation:

1. Moscow State Technical University of Civil Aviation

Abstract

The article deals with the technique of constructing standard arrival routes using the CDO profile in the airspace of the "approach" zone with increased air traffic intensity. The methodology for calculating the effective values of airspace structure elements is based on the probabilistic characteristics of the arrival flow, on the basis of which the required working areas of the «trombone» and «point merge» are determined in an iterative way in order to maintain the CDO regime. As a result of the application of this technique, an exemplary structure is presented from three standard arrival routes for Sheremetyevo Airport, in which trombones are used on the final sections of the arrival route. The calculation of the probabilistic characteristics of the unimportant functioning of a «trombone» («point merge») is made proceeding from the Poisson law of the arrival flow of the aircraft for each route and the uniform distribution of the random value of the aircraft entry of all routes to an elementary common segment (l). A comparative evaluation of the efficiency of the “trombone” and “point merge” circuits on the working area is made on the basis of the characteristics of the aircraft traffic flow. An important result is obtained, mainly on the “trombone” type, not only on the efficiency of airspace use, but also on the integrity characteristics of the aircraft arrival required for CDO. The obtained results are confirmed by the simulation carried out under the conditions of the problem. In conclusion, the conditions for the practical provision of a constant reduction regime at CDO sections of the standard arrival routes are presented, which includes the exceedance of the calculated ATM, and measures are proposed to minimize the negative consequences from such disturbances of the incoming flow.

Publisher

Moscow State Institute of Civil Aviation

Subject

General Medicine

Reference10 articles.

1. Borsoev, V.A., Lebedev, G.N., Malygin, V.B., Nechaev, E.E., Nikulin, A.O. and Tin, Pkhon Chzho. (2018). Prinyatie resheniya v zadachakh upravleniya vozdushnym dvizheniem. Metody i algoritmy [Decision Making in Air Traffic Management Tasks. Methods and Algorithms]. Moscow: Radiotekhnika, 432 p., pp. 37–92. (in Russian)

2. Lebedev, G.N. and Malygin, V.B. (2015). Sposob uporyadocheniya potoka dvizheniya VS po tipu «trombon» s obratnym raspolozheniem poleznoi zoni manevrirovaniya [A way to streamline the flow of aircraft in the type of «trombone» with the reverse location of the useful maneuvering area]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 221, pp. 138–143. (in Russian)

3. Chekhov, I.A. and Chekhov, O.I. (2017). Algoritm formirovaniya dinamicheskoy ocheredi BPLA pri zakhode na posadku [Algorithm for the formation of a dynamic queue of UAVs at the approach]. Civil Aviation High Technologies, vol. 20, no. 4, pp. 25–30. (in Russian)

4. Malygin, V.B. and Nechaev, E.E. (2014). Metod snizheniya konfliktnosti na standartnikh marshrutakh vyleta i pribytiya [Method of conflict resolution on standard departure and arrival routes]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 209, pp. 117–123. (in Russian)

5. Turkov, A.N., Chekhov, I.A. and Nechaev, E.E. (2015). Veroyatnostnyy metod opredeleniya propusknoy sposobnosti v sisteme UVD [Probabilistic method for determining the capacity in the ATC system]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 221, pp. 148–152. (in Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3