CALCULATED RESEARCH OF INFLUENCE OF HELICOPTER MAIN ROTORS GEOMETRY ON THE EFFICIENCY IN HOVER MODE BASED ON THE NONLINEAR VORTEX MODEL

Author:

Ignatkin Yurii M.1,Makeev Pavel V.1,Shomov Alexander I.1

Affiliation:

1. Moscow Aviation Institute (National Research University)

Abstract

The efficiency of the helicopter main rotor in the hover mode is very important, because this mode essentially determines the performance characteristics of the helicopter. A feature of the helicopter rotor aerodynamics is a significant inductive blade influence that highly defines its aerodynamic characteristics. The problem of the influence of the blade twist and spatial geometric layout of the main rotor on its aerodynamic characteristics in the hover mode for a fixed value of the rotor solidity has been considered in this article. As a criterion of efficiency of the rotor in the hover mode relative efficiency (FoM – Figure of Merit) is used. The results are obtained by numerical simulation based on the nonlinear vortex blade model of the rotor, developed at the Helicopter Design Chair of the MAI. The model allows taking into account a complicated spatial shape of the free vortex path of the rotor blades that determines their inductive interaction. As the example of a four-blade main rotor with rectangular blades in plan, the influence of the value of the blades twist on the efficiency in the hover mode is studied. For different values of the rotor thrust, the values and ranges of the blade twist angles are determined, providing the maximum positive effect of the efficiency increase in hovering. For a fixed value of the blade twist, the rotor solidity, and the same operating conditions, the effect of various schemes and configurations of rotor on its efficiency in hover mode is studied. A single rotor with a different number of blades (from 2 to 6), an X-shaped rotor, coaxial rotor and rotor with crossed blades type "synchropter" are considered. The values of the efficiency increase in hovering depending on the rotor layout in comparison with the two-blade rotor are obtained. The comparative analysis of inductive velocities and streamlines for the "synchropter" rotor scheme, coaxial rotor scheme and its equivalent single rotor scheme is presented. The obtained results can be useful at the stage of preliminary design of vertically taking-off aircraft when selecting the parameters of their main rotor system.

Publisher

Moscow State Institute of Civil Aviation

Subject

General Medicine

Reference13 articles.

1. Ignatkin, Yu.M., Makeev, P.V, Shomov, A.I. and Grevcov, B.S. (2009). Nelineynaya lopastnaya vikhrevaya teoriya vinta i ee prilozheniya dlya rashcheta aerodinamicheskikh kharakteristik nesushchikh i rulevykh vintov vertoleta [Nonlinear blade vortex theory of rotor and its application for calculation of aerodynamic characteristics of helicopter rotor]. Vestnik MAI, vol. 16, no. 5, pp. 24–31. (in Russian)

2. Ignatkin, Y.M., Makeev, P.V. and Shomov, A.I. (2018). Aerodinamika nesushchego vinta na rezhimakh osevogo obtekaniya [Main rotor aerodynamics at axial airflow modes]. Moscow: MAI, 100 p. (in Russian)

3. Shaydakov, V.I. and Maslov, A.D. (1995). Aerodinamicheskoe proektirovanie lopastey vozdushnykh vintov [Rotor blades aerodynamic design process]. Moscow: MAI, 68 p. (in Russian)

4. Shajdakov, V.I., Ignatkin, Yu.M. and Maslov, A.D. (1983). Aerodinamicheskie kharakteristiki nesushchikh vintov dvukhvintovykh vertoletov. Aerodinamicheskoe proektirovanie lopastey vozdushnykh vintov [Main rotor aerodynamic characteristics for twin rotor helicopters]. Moscow: MAI, 39 p. (in Russian)

5. Johnson, W. (2013). Rotorcraft aeromechanics. Cambridge University Press, 927 p.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3