Stress granule formation as a marker of cellular toxicity in lung organoids

Author:

Kim Seung-YeonORCID,Kim Kee K.,Kim Eun-Mi

Abstract

Cells regulate protein synthesis under stressful circumstances by forming cytoplasmic RNA granules, termed stress granules (SGs). SGs are membrane-less organelles that function as a protective mechanism in response to stress. They function through liquid-liquid phase separation, which is a vital process comprising 2 distinct de-mixed liquid phases. The components of SGs, such as G3BP1, can serve as biomarkers of cell toxicity. Respiratory diseases are among the leading causes of death globally. After the humidifier disinfectant disaster in Korea in 2011, social concerns over respiratory disease-related deaths have been raised, and the importance of inhalation toxicity testing has been emphasized. Traditionally, in vivo animal models have been used to assess inhalation toxicity, but these models still have limitations owing to physiological differences between species. To overcome these limitations, human immortalized lung epithelial and lung cancer cell lines have been used to evaluate lung toxicity in vitro. Human stem cell-derived 3-dimensional organoid technology has recently been developed in various research fields, including lung toxicity. This review discusses SG-related proteins as potential biomarkers for lung toxicity assessment, especially in human lung organoids under stress conditions, such as exposure to toxic chemicals.

Funder

Korea Environmental Industry and Technology Insitute

Korean Ministry of Environment

Korea Institute of Toxicology

Publisher

The Organoid Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3