Alveolar organoids: development of an <i>in vitro</i> assay to facilitate pulmonary toxicity assessments

Author:

Lee JooyeonORCID,Baek Hyosin,Hong Seok-Ho,Lee Jong-Hee,Wang Seung-Jun,Lee Ji Young,Song Myung Ha,Yang Se-Ran

Abstract

Animal experiments have been performed to predict toxicity in humans in many fields, including toxicology, medicine, and pharmacology, and have contributed to increasing life expectancy. However, animal testing has been a controversial issue for over 100 years due to ethical concerns, and inter-species differences pose limitations for understanding human responses to toxicity. In recent years, many researchers have developed in vitro and in silico alternatives to using animals (e.g., 3-dimensional [3D] organoid culture, organs-on-a-chip, and advanced computer modeling). In this study, we generated 3D alveolar organoids (AOs) for pulmonary toxicity testing following exposure to chemicals, instead of animal models or two-dimensional culture of a single cell type. After human induced pluripotent stem cells were cultured with differentiation medium corresponding to each step for 14 days in 6-well plates, AOs were generated by forced aggregation and cultured with differentiation medium. The AOs were exposed to acrolein and sodium chromate for 24, 72, and 120 hours, and we determined the cytotoxicity of these chemicals using the MTT assay. Exposure to acrolein and sodium chromate for 24 hours decreased proliferation, but the organoid size did not change considerably. However, long-term exposure to acrolein and sodium chromate significantly decreased the organoid size. These findings suggest that AOs could facilitate acute toxicity assessments based on measurements of cell viability in AOs, as well as sub-chronic toxicity assessments based on measurements of both size and viability.

Publisher

The Organoid Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3