Neural model to estimate permeability from well logs and core data

Author:

García-Benítez Silvia RaquelORCID,Arana-Hernández Omar AlejandroORCID

Abstract

A case study testing the effectiveness of neural networks for permeability determination in heterogeneous media using basic rock properties is presented. The dataset used consists of 213 core samples from the Morrow and Viola formations in Kansas, United States. The characterizing parameters of the cores are porosity (ϕ), water and oil saturations (Sw and So), and grain density (GD), and the additional variables from well logs are induction resistivity (ILD), gamma ray (GR) and neutron-porosity (NPHI). The neural predictions are compared with permeability values obtained from three semi-empirical models (Timur, Coates, and Pape) widely used in reservoir characterization. It is concluded that the neural network provides the best overall prediction quantified by the highest correlation coefficients (R and R2) far above those achieved with conventional methods in formations with rock heterogeneity and complex diagenetic nature. Applying Timur’s method R was 0.58 and R2 was 0.343, for Coates’ model R was 0.60 and R2 0.365 and for Pape’s model R was 0.60 and R2 was 0.372, while for the neural model, 0.97 and 0.94 were obtained for R and R2, respectively.

Publisher

Universidad Industrial de Santander

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3