Estratigrafía sísmica 3D aplicada a la estimación de litología en un sistema deltaico

Author:

Illidge Erick JohanORCID,Camargo Jorge LeonardoORCID,Pinto-Valderrama JorgeORCID

Abstract

Seismic stratigraphy becomes a useful tool when it comes to 3D lithology distribution, since it gives the interpreter insights of the facies most likely to be present in a certain sedimentary environment. On the other hand, it is also the main input information while modeling petrophysical properties like water saturation, effective porosity and permeability, which are critical in the process of evaluation of a hydrocarbon reservoir. In this context, techniques such as seismic inversion allows the geoscientists to get 3D models of P-impedance, S-impedance and density, which are used as the main input to estimate the reservoir petrophysical properties just mentioned and additionally useful parameters used as a lithology indicator. This paper proposes a workflow to achieve the goal of integrating seismic stratigraphy, seismic inversion and attributes to get a lithology 3D model. Now, to get a suitable correlation between the facies interpreted using well logs and core data with the elastic properties, rock physic templates (RPT’s) were made where proper elastic modulus was carefully chosen to define probability distribution functions (PDF’s) for each facies defined in the correlation wells. On the other hand, based on a set of stratigraphic surfaces created on a different study, 3D models of P-impedance, S-impedance and density were obtained from seismic inversion so that the RPT’s could be built. For this specific instance, only a set of the elastic properties and seismic attributes offered a suitable correlation with the facies defined in the calibration wells. Moreover, the probability distribution functions (PDF’s) already generated allowed the distribution in 3D and the definition of the ranges in which each facies previously stated varies for the elastic modulus estimated.

Publisher

Universidad Industrial de Santander

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3