Survey of the Achievement of a ZnO Dye-Synthesized Solar Cell

Author:

Ishiyaku kunya Salisu,Abdu Yunusa,Mustafa Mohd Kamarulzaki,Ahmad Mohd Khairul

Abstract

The adoption of renewable energy resources is already becoming incredibly valuable if we are to make the appropriate changes to confront the effects of global warming. Because solar energy is the most widely known form of renewable energy, much focus has been placed on finding quality materials with high energy outputs to replace conventional fossil fuel energy sources. To utilize sun energy for power generation, the dye synthesis solar cell, which belongs to third-generation photovoltaic technology, is likely to compete with more mature silicon technologies. In this paper, we attempt to convey the core idea of dye-synthesized solar cells and the material used to make photoanodes. To find out the contribution of the researcher to the achievement of the DSSC technology, previous studies were reviewed, and the factors that influence performance were analyzed. The research shows that proper optimizations relevant to dopant, light intensity, and type of materials and a new novel approach to increasing photo-electrochemical activity in DSSC could make the devices compete with silicon technology.

Publisher

Al-Kindi Center for Research and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3