Investigation of the Dose-Enhancement Effects of Spherical and Rod-Shaped Gold Nanoparticles on the HeLa Cell Line

Author:

Amani Samad,Mehdizadeh Alireza,Movahedi Mohammad Mehdi,Keshavarz Marzieh,Koosha Fereshteh

Abstract

Background: Cervical cancer cells are known as radioresistant cells. Current treatment methods have not improved the patients’ survival efficiently; thus, new therapeutic strategies are needed to enhance the efficacy of radiotherapy. Gold nanomaterials with different shapes and sizes have been explored as radiosensitizers. The present study compared the radiosensitizing effects of gold nanorods (AuNRs) with spherical gold nanoparticles (AuNPs) on the HeLa cell line irradiated with megavoltage X-rays. Materials and Methods: The cytotoxicity of AuNRs and AuNPs on HeLa cells in the presence and absence of 6-MV X-ray was investigated using the MTT assay. For this aim, HeLa cells were incubated with and AuNPs and AuNRs at various concentrations (5, 10, and 15 µg/mL) for 6 hours. Afterward, HeLa cells were irradiated with 6-MV X-ray at a single dose of 2 Gy. Results: The results showed that the addition of AuNRs and AuNPs could enhance the radiosensitivity of HeLa cells. Both AuNRs and AuNPs showed low toxicity on HeLa cells, while AuNRs were more toxic than AuNPs at the examined concentrations. Moreover, it was found that AuNRs could enhance the radiosensitivity of HeLa cells more than spherical-shaped AuNPs. Conclusion: This study revealed that the shape of nanoparticles is an effective factor when they are used as radiosensitizing agents during radiotherapy. [GMJ.2020;9:e1581]

Publisher

Salvia Medical Sciences Ltd

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3