Electromagnetic device for spacecraft orientation

Author:

Popov I. P.ORCID

Abstract

It is shown that the basis for the creation of an «artificial» mass which is not related to either the volume or the density of the material contained in an artificially inert object, is the requirement to satisfy Newton's second law. Of interest is the possibility of creating conditions for the emergence of an artificial moment of inertia. Since the principle of equivalence between inertial and gravitational mass does not apply to artificial mass, a device with artificial mass can be incomparably lighter than its mechanical counterpart with the same moment of inertia. This quality makes such a device particularly attractive for use in astronautics as light flywheels for orienting spacecraft. The purpose of the study is to analytically synthesize the artificial moment of inertia and establish the parameters that determine it. If an artificial electric flywheel is placed in a «black box» with the shaft outside, then no experiments can determine whether the artificial or «natural» flywheel is inside. The main advantages of an artificial or electromagnetic flywheel over a «natural» one are incomparably lower weight and the possibility of electrically controlling its moment of inertia over a wide range by changing the magnetic field (excitation) and capacitance.

Publisher

TP National Information Satellite System

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3