Growing semiconductor structures for high-performance solar cells in open space

Author:

Blinov V. V.1,Vladimirov V. M.2,Kushnarev N. A.3,Nikiforov A. I.1,Pridachin D. B.1,Pchelyakov D. O.1,Pchelyakov O. P.1,Skorodelov V. A.4,L. V. Sokolov1

Affiliation:

1. Rzhanov Institute of Semiconductor Physics SB RAS

2. LLC NPF Electron

3. Central Research Institute of Infocommunication Technologies and Safety Problems «Nika»

4. JSC «Scientific and Production Association «Molniya»

Abstract

Practical space activities of the country in near-Earth space and in deep space have been developing for more than fifty years. During this time, many new scientific and technical problems were solved, the latest technologies were developed and mastered. This article describes the prerequisites for conducting an experiment on growing semiconductor structures for highly efficient solar cells in the conditions of orbital flight of an international space station. The advantages of carrying out the process in a deep vacuum formed as a result of the manifestation of the molecular screen effect are shown to obtain new thin-film materials with unique properties. A ground-based simulator of a space module and a working molecular screen prototype are described. The features of the preliminary design of a universal automated installation of molecular beam epitaxy in space are discussed. The rationale for the economic efficiency of space technology based on the absence of the need for expensive ultrahigh vacuum pumping facilities, cryogenic equipment and vacuum volumes containing a large amount of stainless steel is given. The experience of three orbital flights of the American Shuttle spacecraft is analyzed, confirming the economic feasibility of projects related to the production of semiconductor heterostructures in space flight conditions.

Publisher

TP National Information Satellite System

Reference15 articles.

1. Andreev V. M. Koncentratornaya solnechnaya fotoehnergetika [Concentrator solar photo-energy] // Alternative energy and ecology, 2012, vol. 5-6, pp. 40-44. (In Russian)

2. Alferov Zh. I., Andreev V. M., Rumyantsev V. D. III-V Heterostructures in Photovoltaics. Concentrator Photovoltaic, Berlin Heidelberg, Springer-Verlag, 2007, pp. 25-50.

3. Alferov Zh. I., Andreev V. M., Rumyantsev V. D. Tendencii i perspektivy razvitiya solnechnoj fotoehnergetiki [Tendencies and prospects for the development of solar photoenergy] // Physics and Technology of Semiconductors, 2004, vol. 38, issue 8, pp. 937–948. (In Russian)

4. Pchelyakov O. P., Sokolov L. V., Nikiforov A. I., Berzhaty V. I., Zvorykin L. L., Ivanov A. I., Nikitsky V. P., Antropov V. Yu., Biriukov V. M., Markov E. V., Djakov Yu. N. Epitaxy of compound semiconductor from molecular beams in space vacuum behind molecular shield. // Proc. of Joint X Europ. and VI Russian symp. on Phys. Sci. in Microgravity, 1997, vol. II, pp. 144-149.

5. Pchelyakov O. P., Blinov V. V., Nikiforov A. I., Sokolov L. V., Zvorykin L. L., Ivanov A. I., Teslenko V. V., Churilo I. V., Zagrebel’nyi A. A. Semiconductor Vacuum Technologies in Space: Hystory, State and Prospects. Poverhnost’(Rus), 2004, vol. 6, pp. 69-76.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3