Questions on utilization of different height balloon sources of optical radiation for calibration of network of ground microtelescopes for tracking of orbital satellites

Author:

Asadov H. H.1ORCID,Mamedova U. F.2

Affiliation:

1. Azerbaijan National Aerospace Agency

2. Azerbaijan State Oil and Industry University

Abstract

One of ways to increase accuracy of ground tracking of orbital satellites is high accuracy calibration of network of microtelescopes used for this purpose. To attain high accuracy utilization of stable laser sources of radiation is most expedient. To install such sources the balloon platforms mounted at some height are practiced. But utilization of only one fixed height of all sources for calibration could lead to insufficient value of signal/noise ratio due to unpredictable atmospheric events. At the same time utilization of sources with different spectral characteristics can complicate the required methodic for analysis. Authors suggest utilization of same type lasers and carrying out of calibration using platforms installed at different heights. Nonapparent function of dependence of laser beams divergence on height of balloon installation is considered for analysis. Some integrated limitation is imposed on this function. It is assumed that number of microtelescopes receiving optical radiation of one source linearly depends on height of the source. It is required to find out the optimum type of suggested non-apparent function upon which target functional composed as sum of all calibration signals could reach maximum. Utilization of such property of target functional for checking up of carried out calibration procedure is suggested. Providing for the required type of suggested non-apparent function is technically resolvable task because the beam divergence is controlled parameter and height of platform can be measured with sufficient accuracy.

Publisher

TP National Information Satellite System

Reference10 articles.

1. Bilardi S., Barjatya A., Gasdia F. Larger optics improved calibration techniques for small satellite observations with the ERAU OSCOM system. Available at: www.amostech.com/TechnicalPapers/2017/Poster/Bilardi.pdf (accessed 14.02.2020).

2. Payne T. E., Castro P. J., Gregory S. A. Satellite photometric error determination // Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, 2015.

3. Stubbs C. W. Toward more precise survey photometry for PanSTARRS and LSST: Measuring directly the optical transmission spectrum of the atmosphere // Publications of the Astronomical Society of the Pacific, 2007, vol. 119, pp. 1163-1178.

4. Butkovskaya V. V. On the variability of Vega // Bull. Crim. Astrophys. Observ., 2014, vol. 110, no. 1, pp. 80-84.

5. Stubbs C. W., Tonry J. L. Addressing the photometric calibration challenge: Explicit determination of the instrumental response and atmospheric response function and tying it all together // The Science of Calibration, Astronomical Society of the Pacific, 2016, vol. 503, p. 37.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3