Comparative Analysis of Meteorological Drought based on the SPI and SPEI Indices

Author:

Faye CheikhORCID

Abstract

The management of water resources in our states has become increasingly difficult in recent times due to the frequency and intensity of droughts. In the context of climate change, extreme weather and climate phenomena such as floods and droughts that are increasingly occurring have adverse consequences on the socio-economic development of the Senegalese territory. Droughts that affect water availability, agricultural production, and livestock operations are generally identified and characterized using drought indices. The objective of this paper is to analyze the hydrological drought trend in two Senegalese regions, the Senegal River valley and the Casamance basin, with different climatic characteristics (Sahelian continental climate and South Sudanian tropical climate, respectively) during the period 1981-2017. For this purpose, daily data from uniformly installed 8 meteorological stations in the two areas were examined, and trends in the standardized precipitation index (SPI) and standardized precipitation-evapotranspiration index (SPEI) were also assessed. The similarities and differences between the indices of the two regions were then examined. In most stations in both areas, there is a statistically significant trend of increasing SPI and SPEI (75% of the stations for SPI and 87.5% for SPEI), despite some negative trends (e.g., SPI in Bakel, SPE and SPEI in Matam, SPEI in Saint Louis). Moreover, the trend of the indices averaged over the stations of the two indices, although generally positive in the two climatic zones considered (with the exception of the SPI in the valley where it is negative), is only significant in the Casamance basin zone. Doi: 10.28991/HIJ-SP2022-03-02 Full Text: PDF

Publisher

Ital Publication

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3