Effects of Renovation on Ventilation and Energy Saving in Residential Building

Author:

Okpalike Cyriacus,Okeke Francis O.,Ezema Emmanuel C.,Oforji Peter I.,Igwe Ajuluchukwu E.

Abstract

Renovation usually increases the aesthetic and market value of buildings. Consequently, with the rapid growth of the city's population and skyrocketing demand for decent housing, the current trend of building conversion and renovation of existing and dilapidated property stock within city centres has become rampant. The rise in demand has pushed beyond the boundaries that every real estate investor wants to maximize profit, and it has resulted in the prevalence of uncontrolled building development, land use conversion, and non-compliance with building requirements, etc. Renovations that involve changes in building elements (especially the window system) that can influence energy saving and ventilation efficiency have thus become very common. However, the effects of building renovations on ventilation and energy efficiency have not been fully examined, particularly in Enugu (Nigeria), a rapidly growing colonial metropolis. This research employed a qualitative research approach to investigate the effects of building renovation on ventilation and energy saving in Achara layout, Enugu City, Nigeria. Four blocks of flat residential buildings were the derived sample size using a judgmental sampling technique. Physical measurements, an observation schedule, and oral interviews with site workers centred on window size, area, property, and fenestration type were used to collect empirical data involving the window system. The result reveals a very significant difference between the as-built and renovated window design systems of all studied variables. Its conclusion hinged on the fact that a renovated structure does not encourage effective natural ventilation and hence will consume more energy in cooling and lighting. It recommends the re-introduction of appropriate window systems and construction techniques for the tropical environment to reduce heat stress build-up within building units. Doi: 10.28991/CEJ-SP2021-07-09 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3