Fingerprint Database Enhancement by Applying Interpolation and Regression Techniques for IoT-based Indoor Localization

Author:

Suroso Dwi JokoORCID,Adiyatma Farid Yuli Martin,Cherntanomwong Panarat,Sooraksa Pitikhate

Abstract

Most applied indoor localization is based on distance and fingerprint techniques. The distance-based technique converts specific parameters to a distance, while the fingerprint technique stores parameters as the fingerprint database. The widely used Internet of Things (IoT) technologies, e.g., Wi-Fi and ZigBee, provide the localization parameters, i.e., received signal strength indicator (RSSI). The fingerprint technique advantages over the distance-based method as it straightforwardly uses the parameter and has better accuracy. However, the burden in database reconstruction in terms of complexity and cost is the disadvantage of this technique. Some solutions, i.e., interpolation, image-based method, machine learning (ML)-based, have been proposed to enhance the fingerprint methods. The limitations are complex and evaluated only in a single environment or simulation. This paper proposes applying classical interpolation and regression to create the synthetic fingerprint database using only a relatively sparse RSSI dataset. We use bilinear and polynomial interpolation and polynomial regression techniques to create the synthetic database and apply our methods to the 2D and 3D environments. We obtain an accuracy improvement of 0.2m for 2D and 0.13m for 3D by applying the synthetic database. Adding the synthetic database can tackle the sparsity issues, and the offline fingerprint database construction will be less burden. Doi: 10.28991/esj-2021-SP1-012 Full Text: PDF

Publisher

Ital Publication

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical KNN for Smartphone-Based 3D Indoor Positioning;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

2. Highly Precised and Efficient Robot-Based ESPAR Antenna Measurements in Realistic Environments;2024 18th European Conference on Antennas and Propagation (EuCAP);2024-03-17

3. Automatic Fingerprint Data Labeling Using WiFi Signal and Smartphone Camera for Indoor Positioning;Wireless Communications and Mobile Computing;2024-01

4. Regression-based Path Loss Model Correction to Construct Fingerprint Database for Indoor Localization;Proceedings of the 2023 6th International Conference on Electronics, Communications and Control Engineering;2023-03-24

5. Fingerprint-based Indoor Localization via Deep Learning;Proceedings of the 2023 6th International Conference on Electronics, Communications and Control Engineering;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3