Author:
Aljaafreh Ahmad,Abadleh Ahmad,Alja'Afreh Saqer S.,Alawasa Khaled,Almajali Eqab,Faris Hossam
Abstract
This paper proposes a fully automated vision-based system for real-time COVID-19 personal protective equipment detection and monitoring. Through this paper, we aim to enhance the capability of on-edge real-time face mask detection as well as improve social distancing monitoring from real-live digital videos. Using deep neural networks, researchers have developed a state-of-the-art object detector called "You Only Look Once Version Five" (YOLO5). On real images of people wearing COVID19 masks collected from Google Dataset Search, YOLOv5s, the smallest variant of the object detection model, is trained and implemented. It was found that the Yolov5s model is capable of extracting rich features from images and detecting the face mask with a high precision of better than 0.88 mAP_0.5. This model is combined with the Density-Based Spatial Clustering of Applications with Noise method in order to detect patterns in the data to monitor social distances between people. The system is programmed in Python and implemented on the NVIDIA Jetson Xavier board. It achieved a speed of more than 12 frames per second. Doi: 10.28991/ESJ-2023-SPER-05 Full Text: PDF
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献