A Comparative Study of Sentiment Analysis Methods for Detecting Fake Reviews in E-Commerce

Author:

Puttarattanamanee Maneerat,Boongasame Laor,Thammarak KaranratORCID

Abstract

The popularity of the e-commerce system has increased, especially under the COVID scenario. Consumer product reviews from the past have had a significant impact on influencing consumers' purchasing decisions. Fake reviews—those written by humans and computers that engage in dishonest behavior—are consequently generated to increase product sales. The fake reviews hurt consumers and are dishonest. The goal of this research is to examine and evaluate the performance of various methods for identifying fake reviews. The well-known and widely-used Amazon Review Data (2018) dataset was used for this research. The first 10 product categories on Amazon.com with favorable feedback will be provided in the data section. After that, perform fundamental data preparation procedures such as special character trimming, bag of words, TF-IDF, etc. The models are trained to create a dataset for detecting fake reviews. This research compares the performance of four different models: GPT-2, NBSVM, BiLSTM, and RoBERTa. The hyperparameters of the models are also tuned to find the optimal values. The research concludes that the RoBERTa model performs the best overall, with an accuracy of 97%. GPT-2 has an overall accuracy of 82%, NBSVM has an overall accuracy of 95%, and BiLSTM has an overall accuracy of 92%. The research also calculates the Area Under the Curve (AUC) for each model and finds that RoBERTa has an AUC of 0.9976, NBSVM has an AUC of 0.9888, BiLSTM has an AUC of 0.9753, and GPT-2 has an AUC of 0.9226. It can be observed that the RoBERTa model has the highest AUC value, which is close to 1. Therefore, it can be concluded that this model provides the most accurate prediction for detecting fake reviews, which is the main focus of this research. Doi: 10.28991/HIJ-2023-04-02-08 Full Text: PDF

Publisher

Ital Publication

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SSKG: Subject stream knowledge graph, a new approach for event detection from text;Ain Shams Engineering Journal;2024-09

2. A Comparative Study of Movie Review Segregation Using Sentiment Analysis;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3