A Data Mining Perspective on the Confluent Ions` Effect for Target Functionality

Author:

Fazelabdolabadi Babak,Montazeri Mostafa,Pourafshary Peyman

Abstract

The production of hydrocarbon resources at an oil field is concomitant with challenges with respect to the formation of scale inside the reservoir rock – intricately impairing its permeability and hindering the flow. Historically, the effect of ions is attributed to the undergone phenomenon; nevertheless, there exists a great deal of ambiguity about its relative significance compared to other factors, or the effectiveness as per the ion type. The present work applies a data mining strategy to unveil the influencing hierarchy of the parameters involved in driving the process within major rock categories – sandstone and carbonate – to regulate a target functionality. The functionalities considered evolve around maximizing the oil recovery, minimizing permeability impairment/ scale damage. A pool of experimental as well as field data was used for this sake, accumulating the bulk of the available literature data. The methods used for data analysis in the present work included the Bayesian Network, Random Forest, Deep Neural Network, as well as Recursive Partitioning. The results indicate a rolling importance for different ion species - altering under each functionality – which is not ranked as the most influential parameter in either case. For the oil recovery target, our results quantify a distinction between the source of ion of a single type, in terms of its influencing rank in the process. This latter deduction is the first proposal of its kind – suggesting a new perspective for research. Moreover, the machine learning methodology was found to be capable of reliably capturing the data – evidenced by the minimal errors in the bootstrapped results. Doi: 10.28991/HIJ-2021-02-03-05 Full Text: PDF

Publisher

Ital Publication

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3