Drought Scenario Analysis Using RiverWare: A Case Study in Urumqi River Basin, China

Author:

Abudu Shalamu,Sheng Zhuping,Zamani Sabzi Hamed,King James Phillip

Abstract

In this study, we applied RiverWare modeling approach to evaluate the management decisions on surface water and groundwater diversions in the agricultural watershed of the Urumqi River Basin of Xinjiang in Northwestern China. A rule-based daily time step RiverWare model was developed to simulate the hydrologic effects of different water management alternatives considering irrigation and drainage systems, crop water use, and diversion rules at the diversion dams within the basin. Daily data period from 2005 to 2009 was used to calibrate the model and 2010-2012 was used to validate the model. A calibrated daily RiverWare model was then used to evaluate the management decisions under different drought scenarios that generated by using the snowmelt runoff model (SRM) that developed to simulate inflow from upstream of Yingxiongqiao gaging station. Two drought scenarios (reduced precipitation and increased temperature) analysis were performed, and the corresponding hydrological variables were compared to the baseline scenario. The results indicated that the model adequately reproduced the historical inflows for the Wulabo Reservoir. The scenario analysis results suggest that the reduced precipitation led to increased groundwater pumping for irrigation both in the spring and summer. The increased temperature induces a significant increase in surface runoff in the basin and leads to increased crop water demand within the irrigation district, and however does not necessarily reduce the groundwater pumpage. Water operation policies from RiverWare provide guidelines for conjunctive use of groundwater and surface water resources within the basin under different water supply scenarios in the future.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3