The Effect of Styrofoam Artificial Lightweight Aggregate (ALWA) on Compressive Strength of Self Compacting Concrete (SCC)

Author:

Darayani Dhiafah Hera,Tavio Tavio,Raka I G. P.,Puryanto Puryanto

Abstract

Self-compacting concrete (SCC) is a fresh concrete that is able to flow and fill up the formwork by itself without the need of a vibrator to compact it. One of the reasons that causes the damage of a building structure during an earthquake is the heavy weight of its structural members which are from the high density of the material used such concrete material. Lightweight aggregate is one of the solutions to reduce the weight of the structure. Therefore, the SCC using the artificial lightweight aggregate (ALWA) is one of the solutions to reduce the self-weight (dead load) of a structure. This research was conducted to investigate the impact of the use of ALWA in conventional concrete and SCC in terms of its compressive strength and modulus of elasticity. To study the impact of the use of ALWA in SCC, several variation of percentage of ALWA as a substitution to the natural coarse aggregate was examined. The proportions of ALWA as a replacement to the coarse aggregate were 0%, 15%, 50%, and 100%. The test specimens were the cylindrical concrete of 200 mm in height and 100 mm in diameter for both compressive strength and modulus of elasticity tests. The results of the compressive strength test indicated that the higher the percentage of ALWA used in SCC, the lower the compressive strength of the concrete. The addition of ALWA as a substitution to the natural coarse aggregate to conventional concrete and SCC was found optimum at 15% replacement with the compressive strength of conventional concrete and SCC of 21.13 and 28.33 MPa, respectively. Whereas, the modulus of elasticity of the conventional concrete and SCC were found to be 20,843.99 and 23,717.77 MPa, respectively.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3