Flexural Behaviour of Lightweight Foamed Concrete Beams Reinforced with GFRP Bars

Author:

Abd Suhad MORCID,Ghalib Dhamyaa

Abstract

A three meter-length cantilever beam loaded with a concentrated load at its free end is studied to determine shear stresses. In the present study, three cross sections are considered: rectangle (R); I, and T. The study presents a comparison of maximum shear stresses obtained by means of two methods: classical analytical equation derived by Collingnon, and finite element method (FEM) software. Software programs ANSYS and SAP2000 were used. The results show difference between the maximum shear stresses obtained by the analytical equation and the software, being the last is always higher. The average differences for ANSYS and SAP2000, independently of the cross section, were 12.76% and 11.96%, respectively. Considering these differences, correction factors were proposed to the classical analytical formula for each cross section case to obtain more realistic results. After the correction, the average differences decrease to 1.48% and 4.86%, regardless of the cross section shape.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavior of Reinforced Composite Foamed-Normal Concrete Beams;Journal of Engineering;2023-08-01

2. Lightweight foamed concrete for houses in Jordan;Case Studies in Construction Materials;2023-07

3. Exploiting fiber control for delayed failure in 3D printed fiber reinforced polymer composites;Composites Part B: Engineering;2023-02

4. Instantaneous and long-term performance of foamed concrete slabs;European Journal of Environmental and Civil Engineering;2023-01-08

5. Flexural behaviour of hybrid reinforced concrete beams using FRP bars - A critical review;LOW RADIOACTIVITY TECHNIQUES 2022 (LRT 2022): Proceedings of the 8th International Workshop on Low Radioactivity Techniques;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3