Author:
Kosvyra Alexandra,Maramis C.,Chouvarda I.
Abstract
Next Generation Sequencing (NGS) technologies has revolutionized genomics data research by facilitating high-throughput sequencing of genetic material that comes from different sources, such as Whole Exome Sequencing (WES) and RNA Sequencing (RNAseq). The exploitation and integration of this wealth of heterogeneous sequencing data remains a major challenge. There is a clear need for approaches that attempt to process and combine the aforementioned sources in order to create an integrated profile of a patient that will allow us to build the complete picture of a disease. This work introduces such an integrated profile using Chronic Lymphocytic Leukemia (CLL) as the exemplary cancer type. The approach described in this paper links the various NGS sources with the patients’ clinical data. The resulting profile efficiently summarizes the large-scale datasets, links the results with the clinical profile of the patient and correlates indicators arising from different data types. With the use of state-of-the-art machine learning techniques and the association of the clinical information with these indicators, which served as the feature pool for the classification, it has been possible to build efficient predictive models. To ensure reproducibility of the results, open data were exclusively used in the classification assessment. The final goal is to design a complete genomic profile of a cancer patient. The profile includes summarization and visualization of the results of WES and RNAseq analysis (specific variants and significantly expressed genes, respectively) and the clinical profile, integration/comparison of these results and a prediction regarding the disease trajectory. Concluding, this work has managed to produce a comprehensive clinico-genetic profile of a patient by successfully integrating heterogeneous data sources. The proposed profile can contribute to the medical research providing new possibilities in personalized medicine and prognostic views.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献