Effect of Using Recycled Coarse Aggregate to the Bond Stress in Term of Beam Splice Specimens

Author:

Mohammed Abbas Sadiq,Abbas Ali Laftah

Abstract

In fact, demolition west disposal represents a serious problem in the civil engineering work since such materials are accumulated in large quantities. In this way, using these materials in new construction is considered a good sustainable and cost effective solution. The basic objective of this study is to investigate the behavior of lap splice when recycled coarse aggregate is used in structural members by experimental program. This program comprises casting 12 beam splice specimens. Two mix designs are proposed with nominal compressive strength of 20 and 30 MPa, more precisely, the degrees of coarse recycled aggregate partial replacement ratio that taken throughout this study are 0, 50 and 100% respectively using a crushed concrete casted with the same original mixes defined.  Since a considerable lack of information was observed about the role of recycled coarse aggregate when the bond stress is taken into account, the beam splice specimens during this study were devoted to investigate lap splice bond strength in both singly and doubly beams to discover the desired behavior in tension and compression. The results showed that the degree of recycled coarse aggregate decreases the consequent bond stress in term of beam splice specimens for singly and doubly beams. The brittle failure behavior is evident in the entire beam specimens that conducted throughout this study.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3