Mechanical Parameter Inversion in Sandstone Diversion Tunnel and Stability Analysis during Operation Period

Author:

Wang Zhaoqiang,Chen Xin,Xue Xinhua,Zhang Lei,Zhu Wenkai

Abstract

A large number of experimental studies show that the mechanical parameters of deep buried surrounding rock show significant attenuation characteristics with the increase of strain from the rheological acceleration stage to the attenuation stage. However, the existing numerical models all take mechanical parameters as constants when describing the rheological behavior of surrounding rocks, which can only be applied to the stability analysis of the shallowly buried tunnel. Therefore, this work proceeding from the actual project, improved the sandstone rheological constitutive model and optimized the algorithm of parameter inversion, and put forward a long-term stability analysis model that can accurately reflect the rheological characteristics of surrounding rocks under the complex geological condition including high stress induced by great depth and high seepage pressure. In the process, a three-dimensional nonlinear rheological damage model was established based on Burgers rheological model by introducing damage factors into the derivation of the sandstone rheological constitutive model to accurately describe the rheological behaviors of the deep buried tunnel. And BP (Back Propagation) neural network optimized by the multi-descendant genetic algorithm is used to invert the mechanical parameters in the model, which improves the efficiency and precision of parameter inversion. Finally, the rheological equation was written by using parametric programming language and incorporated into the general finite element software ANSYS to simulate the rheological behavior of the tunnel rock mass at runtime. The results of the model analysis are in good agreement with the monitoring data in the later stage. The research results can provide a reference for the stability analysis of similar projects.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3