A Hybrid of Artificial Neural Networks and Particle Swarm Optimization Algorithm for Inverse Modeling of Leakage in Earth Dams

Author:

VaeziNejad SeyedMahmood,Marandi SeyedMorteza,Salajegheh Eysa

Abstract

A new intelligent hybrid method for inverse modeling (Parameter Identification) of leakage from the body and foundation of earth dams considering transient flow model has been presented in this paper. The main objective is to determine the permeability in different parts of the dams using observation data. An objective function which concurrently employs time series of hydraulic heads and flow rates observations has been defined to overcome the ill-posedness issue (nonuniqueness and instability of the identified parameters). A finite element model which considers all construction phases of an earth dam has been generated and then orthogonal design, back propagation artificial neural network and Particle Swarm Optimization algorithm has been used simultaneously to perform inverse modeling. The suggested method has been used for inverse modeling of seepage in Baft dam in Kerman, Iran as a case study. Permeability coefficients of different parts of the dam have been inspected for three distinct predefined cases and in all three cases excellent results have been attained. The highly fitting results confirm the applicability of the recommended procedure in the inverse modeling of real large-scale problems to find the origin of leakage channels which not only reduces the calculation cost but also raises the consistency and efficacy in such problems.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3