Manufacturing and Performance of an Economical 1-D Shake Table

Author:

Danish Aamar,Ahmad Naveed,Salim M. Usama

Abstract

The researchers and engineers encountered many problems to precisely replicate earthquake waves. Earthquakes are one of the nature's worst catastrophes and are still unpredictable. Statistical research has shown that the earthquakes have increased in frequency in recent years and have become a major concern for the world especially for those countries which are located on the fault lines such as Japan, Bangladesh and Pakistan. So, it was imperative to device a mechanism to check earthquake response and apply some necessary mitigations for the safety of humanity. After many years of research an indispensable testing apparatus was designed named as Shake Table. This apparatus is extensively used in earthquake research centers globally because it is the best available apparatus to replicate the earthquakes imposed dynamic effects on structures. A uni-axial shaking table was designed, manufactured and installed in University of Engineering & Technology Taxila, Pakistan which is operated on 3 HP servo motor coupled with encoder, motion controller and supported on HSB mechanical linear drive. The system was assembled in a simple way with care to endure sufficient replication of given (recorded) motion by shake table system. This paper focuses on the designing, manufacturing and performance of an economical analytical model of 1-D shake table incorporating conjunction of structural dynamics and linear control theory.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shaking Table Design for Testing Earthquake Early Warning Systems;Designs;2023-05-29

2. Microcontroller Based Low Cost Seismic Vibration Generating System;2022 26th International Conference on System Theory, Control and Computing (ICSTCC);2022-10-19

3. Health assessment based on dynamic characteristics of reinforced concrete beam using realtime wireless structural health monitoring sensor;Journal of Structural Integrity and Maintenance;2020-07-02

4. A Game-Based Approach for Motoric Stroke Rehabilitation: Defining the Requirements;"Proceedings of the 12th European Conference on Game Based Learning ";2019-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3