Trombe Wall Application with Heat Storage Tank

Author:

Topçuoğlu Kıvanç

Abstract

In this study, an investigation was made of the performance of a Trombe wall of classical structure used together with a heat store. Most Trombe walls are able to supply the heating needs of a space to which they are connected without the need for extra heating at times when the sun is shining. However, the heat obtained from the Trombe wall can be in excess of needs at such times, and measures must be taken to provide ventilation to the heated space. It is thought that the heat energy can be used more efficiently and productively by storing the excess heat outside the building and using it inside the building when there is no sunlight. To this purpose, a tank full of water and marble was built as a heat store as an alternative to the general Trombe wall design, and an attempt was made to minimise heat losses by burying it in the ground. It was concluded that in place of a traditional Trombe wall system using a massive wall heat store, a heat store could be constructed in a different position and with different materials. The Trombe wall system which was developed and tested met up to 30% of the energy needed for heating and cooling the building, and reduced the architectural and static disadvantages of Trombe wall systems. As a result of the study, it was seen that where a standard reinforced concrete wall could supply heat to the inside for 7 hours and 12 minutes, the figure for a wall made of paraffin wax was 8 hours and 55 minutes. In the same study, the heat storage thickness of a reinforced concrete wall was calculated as 20 cm, while that of a paraffin wax wall was calculated as 5 cm.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3