Abstract
The development of sustainable concrete in achieving the developmental goals of the United Nations in terms of sustainable infrastructure and innovative technology forms part of the focus of this research paper. In order to move towards sustainability, the utilization of the by-products of agro-industrial operations, which are fly ash (FA) and rice husk ash (RHA), in the production of concrete has been studied. Considering the environmental impact of concrete constituents, multiple mechanical and hydraulic properties of fly ash (FA) and rice husk ash (RHA) concrete have been proposed using intelligent techniques; artificial neural network (ANN) and evolutionary polynomial regressions (EPR). Also, an intelligent mix design tool/chart for this case under study is proposed. Multiple data points of concrete materials, which were further reduced to ratios as follows; cement to binder ratio (C/B), aggregate to binder ratio (Ag/B), and plasticizer to binder ratio (PL/B) were used in this exercise. At the end of the protocol, it is observed that the constituents’ ratios are dependent on the behavior of the whole, which can be solved by using the proposed model equations and mix design charts. The models performed optimally, as none showed any performance below 80%. However, ANN, which predicted Fc03, Fc07, Fc28, Fc60, Fc90, Ft28, Ff28 & Fb28, S, Ec28 & K28, and P with an accuracy of greater than 95% each with average error of less than 9.4% each, is considered the decisive technique in predicting all the studied concrete properties, including the life cycle assessment potential of the concrete materials. Doi: 10.28991/CEJ-2022-08-12-018 Full Text: PDF
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献