Landslide Susceptibility Mapping using Machine Learning Algorithm

Author:

Hussain Muhammad AfaqORCID,Chen Zhanlong,Wang Run,Shah Safeer Ullah,Shoaib Muhammad,Ali Nafees,Xu Daozhu,Ma Chao

Abstract

Landslides are natural disasters that have resulted in the loss of economies and lives over the years. The landslides caused by the 2005 Muzaffarabad earthquake heavily impacted the area, and slopes in the region have become unstable. This research was carried out to find out which areas, as in Muzaffarabad district, are sensitive to landslides and to define the relationship between landslides and geo-environmental factors using three tree-based classifiers, namely, Extreme Gradient Boosting (XGBoost), Random Forest (RF), and k-Nearest Neighbors (KNN). These machine learning models are innovative and can assess environmental problems and hazards for any given area on a regional scale. The research consists of three steps: Firstly, for training and validation, 94 historical landslides were randomly split into a proportion of 7/3. Secondly, topographical and geological data as well as satellite imagery were gathered, analyzed, and built into a spatial database using GIS Environment. Nine layers of landslide-conditioning factors were developed, including Aspect, Elevation, Slope, NDVI, Curvature, SPI, TWI, Lithology, and Landcover. Finally, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) value were used to estimate the model's efficiency. The area under the curve values for the RF, XGBoost, and KNN models are 0.895 (89.5%), 0.893 (89.3%), and 0.790 (79.0%), respectively. Based on the three machine learning techniques, the innovative outputs show that the performance of the Random Forest model has a maximum AUC value of 0.895, and it is more efficient than the other tree-based classifiers. Elevation and Slope were determined as the most important factors affecting landslides in this research area. The landslide susceptibility maps were classified into four classes: low, moderate, high, and very high susceptibility. The result maps are useful for future generalized construction operations, such as selecting and conserving new urban and infrastructural areas. Doi: 10.28991/CEJ-2022-08-02-02 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3