Investigating the Influence of Rigden Void of Fillers on the Moisture Damage of Asphalt Mixtures

Author:

Wuttisombatjaroen Jirat,Hemnithi Nithinan,Chaturabong PreedaORCID

Abstract

Moisture damage and bond loss are major factors in pavement degradation, often stemming from excessive moisture accumulation due to weather events. Water infiltrates the gap between asphalt binder and aggregate, weakening the asphalt bond. Rigden Void (RV) has emerged as a crucial parameter in assessing the susceptibility of asphalt mastic-aggregate systems to moisture-induced damage. However, numerous waste natural fillers have been researched as potential aggregate filler replacements, yet their role in moisture damage remains unexplored. Therefore, this study aimed to understand how different fillers, including waste natural materials like coconut peat and bagasse, affect asphalt mixture performance and moisture damage. Results showed that Rigden Voids were positively correlated with pore size and negatively correlated with surface area. Larger pores contributed to higher Rigden Voids, while greater surface areas led to lower values. Limestone had the highest Rigden Void percentage due to its larger pore size and lower surface area. The research also explored contact parameters between fillers and asphalt, revealing varying interactions based on filler and asphalt types. Moisture damage testing demonstrated that all mixtures, both dense and porous, displayed good resistance to moisture damage. The correlation analysis between Rigden Voids and moisture damage revealed varying degrees of influence, dependent on asphalt type and aggregate gradation. Doi: 10.28991/CEJ-2023-09-12-014 Full Text: PDF

Publisher

Ital Publication

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3