Predictive Models to Evaluate the Interaction Effect of Soil-Tunnel Interaction Parameters on Surface and Subsurface Settlement

Author:

Hassan Samar Ali,Shitote Stanley Muse,Thuo Joseph Ng'ang'a,Kiplangat Dennis Cheruiyot

Abstract

Nowadays, the need for subway tunnels has increased considerably with urbanization and population growth in order to facilitate movements. In urban areas, subway tunnels are excavated in shallow depths under densely populated areas and soft ground. Its associated hazards include poor ground conditions and surface settlement induced by tunneling. Various sophisticated variables influence the settlement of the ground surface caused by tunneling. The shield machine's operational parameters are critical due to the complexity of shield-soil interactions, tunnel geometry, and local geological parameters. Since all elements appear to have some effect on tunneling-induced settlement, none stand out as particularly significant; it might be challenging to identify the most important ones. This paper presents a new model of an artificial neural network (ANN) based on the partial dependency approach (PDA) to optimize the lack of explainability of ANN models and evaluate the sensitivity of the model response to tunneling parameters for the prediction of ground surface and subsurface settlement. For this purpose, 239 and 104 points for monitoring surface and subsurface settlement, respectively, were obtained from line Y, the west bond of Crossrail tunnels in London. The parameters of the ground surface, the trough, and the tunnel boring machine (TBM) were used to categorize the 12 potential input parameters that could impact the maximum settlement induced by tunneling. An ANN model and a standard statistical model of multiple linear regression (MLR) were also used to show the capabilities of the ANN model based on PDA in displaying the parameter's interaction impact. Performance indicators such as the correlation coefficient (R2), root mean square error (RMSE), and t-test were generated to measure the prediction performance of the described models. According to the results, geotechnical engineers in general practice should attend closely to index properties to reduce the geotechnical risks related to tunneling-induced ground settlement. The results revealed that the interaction of two parameters that have different effects on the target parameter could change the overall impact of the entire model. Remarkably, the interaction between tunneling parameters was observed more precisely in the subsurface zone than in the surface zone. The comparison results also indicated that the proposed PDA-ANN model is more reliable than the ANN and MLR models in presenting the parameter interaction impact. It can be further applied to establish multivariate models that consider multiple parameters in a single model, better capturing the correlation among different parameters, leading to more realistic demand and reliable ground settlement assessments. This study will benefit underground excavation projects; the experts could make recommendations on the criteria for settlement control and controlling the tunneling parameters based on predicted results. Doi: 10.28991/CEJ-2022-08-11-05 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3