Performance Flexural of RC Beams Without Concrete at Tension Cross-section

Author:

Amir AstiahORCID,Rahman Aulia,Opirina Lissa,Idris Fadli

Abstract

This study aims to analyze the flexural capacity of RC without concrete in a tension cross-section using an experimental method. The number of specimens is three pieces, namely a spiral reinforced concrete beam (SBC) and a vertical reinforced concrete beam (CBN); both of these blocks are without concrete in the cross-section of the reinforcement and 60D tensile steel reinforcement in the support area, where D is the primary diameter, and a conventional concrete beam as the control beam (CB). The beam size is 3100×150×200 mm. The beams are supported by simple supports with a span of 3000 mm. The concrete in the structural beam elements, which work optimally to withstand the load, is the outermost fibre part of the side, while the concrete on the tension side does not have a direct role in determining the magnitude of the resisting moment. Therefore, the quality of the concrete in the concrete beam section must be optimized, while the concrete in the tension section must be minimized. Eliminating concrete in tension areas reduces the construction's self-weight and use of concrete-making materials. The main variables in this research are bending behaviour and crack pattern. The beam specimens were tested with two-point loading monotonically. By observing the crack pattern and failure mode, the results showed an increase in the capacity load of SBC by 21.58% CBN but a decrease of 27.57% compared to the CB control beam. Flexural cracks and beam failures resembled under-reinforcing. The flexural capacity was analyzed based on static analysis and then validated by calculating the ratio between the theoretical nominal moment and the experimental moment. This finding shows that changing the conventional shear reinforcement model to spiral can increase the flexural of the beam without concrete in the tension cross-section. Doi: 10.28991/CEJ-2022-08-11-014 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Damage quantification in beam-type structures using modal curvature ratio;Innovative Infrastructure Solutions;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3