Estimate Suitable Location of Solar Power Plants Distribution by GIS Spatial Analysis

Author:

Bedewy Baydaa Abdul Hussein,Al-Timimy Sophia Rezaq Ali

Abstract

This study proposes a model for the best investment in renewable energy plants that uses DEM, Spatial Analysis, and analysis of indicator weights by AHP to choose a suitable place to locate the solar plants, which increases their efficiency. This is because renewable energy is the most important component of future sustainability. In addition, the cities of Iraq, including Babylon, have increased the proportion of the population, which has led to high rates of urbanization and a lack of services. In particular, the need for services increased, especially electric power, which is characterized by its inefficiency and insufficiency. Yet, the governorate is a good source of solar energy and regular radiation. Therefore, the trend to use renewable energy is the optimal solution, and this manuscript proposes multiple criteria that can determine the optimal locations for building solar energy farms. So methods of analysis are the Digital Elevation Model (DEM), the slope of the earth, efficient distances from the city center, the main road networks and electricity distribution networks, and average solar brightness (hours/day) quantity. Finally, the spatial analysis of all indicators shows eight sites. By using criteria of analysis based on AHP analysis, the result is that six represent suitable sites chosen as sufficient space to locate solar plants. Consequently, the results of this manuscript for solar energy collection projects show percentages ranging between 2% and 37%, with areas starting with 10 ‎km2 and gradually rising towards the largest proposed area of 155 km2, distributed over the province so that the total proposed areas for solar energy collection projects will be about 422 km2. All that aim to achieve the best service in quality and quantity of renewable energy to establish sustainability and efficiency economic modeling in addition to increasing production efficiency. Doi: 10.28991/CEJ-2023-09-05-013 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3