Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods

Author:

El Alaoui Meryem,Ouazzani Chahidi Laila,Rougui Mohammed,Lamrani Abdeghafour,Mechaqrane Abdellah

Abstract

Energy management is now essential in light of the current energy issues, particularly in the building industry, which accounts for a sizable amount of global energy use. Predicting energy consumption is of great interest in developing an effective energy management strategy. This study aims to prove the outperformance of machine learning models over SARIMA models in predicting heating energy usage in an administrative building in Chefchaouen City, Morocco. It also highlights the effectiveness of SARIMA models in predicting energy with limited data size in the training phase. The prediction is carried out using machine learning (artificial neural networks, bagging trees, boosting trees, and support vector machines) and statistical methods (14 SARIMA models). To build the models, external temperature, internal temperature, solar radiation, and the factor of time are selected as model inputs. Building energy simulation is conducted in the TRNSYS environment to generate a database for the training and validation of the models. The models' performances are compared based on three statistical indicators: normalized root mean square error (nRMSE), mean average error (MAE), and correlation coefficient (R). The results show that all studied models have good accuracy, with a correlation coefficient of 0.90 < R < 0.97. The artificial neural network outperforms all other models (R=0.97, nRMSE=12.60%, MAE= 0.19 kWh). Although machine learning methods, in general terms, seemingly outperform statistical methods, it is worth noting that SARIMA models reached good prediction accuracy without requiring too much data in the training phase. Doi: 10.28991/CEJ-2023-09-05-01 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3