Author:
El Alaoui Meryem,Ouazzani Chahidi Laila,Rougui Mohammed,Lamrani Abdeghafour,Mechaqrane Abdellah
Abstract
Energy management is now essential in light of the current energy issues, particularly in the building industry, which accounts for a sizable amount of global energy use. Predicting energy consumption is of great interest in developing an effective energy management strategy. This study aims to prove the outperformance of machine learning models over SARIMA models in predicting heating energy usage in an administrative building in Chefchaouen City, Morocco. It also highlights the effectiveness of SARIMA models in predicting energy with limited data size in the training phase. The prediction is carried out using machine learning (artificial neural networks, bagging trees, boosting trees, and support vector machines) and statistical methods (14 SARIMA models). To build the models, external temperature, internal temperature, solar radiation, and the factor of time are selected as model inputs. Building energy simulation is conducted in the TRNSYS environment to generate a database for the training and validation of the models. The models' performances are compared based on three statistical indicators: normalized root mean square error (nRMSE), mean average error (MAE), and correlation coefficient (R). The results show that all studied models have good accuracy, with a correlation coefficient of 0.90 < R < 0.97. The artificial neural network outperforms all other models (R=0.97, nRMSE=12.60%, MAE= 0.19 kWh). Although machine learning methods, in general terms, seemingly outperform statistical methods, it is worth noting that SARIMA models reached good prediction accuracy without requiring too much data in the training phase. Doi: 10.28991/CEJ-2023-09-05-01 Full Text: PDF
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献