Author:
Alsamawi Almoutaz Bellah,Boumechra Nadir,Hamdaoui Karim
Abstract
This paper investigates the cyclic behaviour of steel-concrete encased composite columns. By investigating the cover concrete and the steel-concrete coefficient of friction on the behaviour (strength, ductility, stiffness, and energy dissipation) of composite columns subjected to combined axial load and cyclically increasing lateral load to improve the strength and performance of the composite column. Eight of the columns were designed to study the cover concrete effect, and eleven other columns were designed to study the coefficient of friction effect in the dynamic behaviour to the cyclic load. Additionally, in this study, the finite element models created in ANSYS software were verified and calibrated against previously published experimental results (load-displacement curve, load capacity and failure mode). The numerical results obtained from the finite element model indicate that the ductility and the energy dissipated increased by +11.71 and +18.93% receptively by the increase of the cover concrete until reaching the limit of the cover concrete. Beyond this limit, the ductility and the energy decrease by 27.33 and 24.97% receptively. The results also indicate that the ductility and the energy dissipated increased by 12.62 and 7.82% receptively by the increased coefficient of friction until reach 0.6, after that the energy decreases by 4.47%. Doi: 10.28991/CEJ-2022-08-01-04 Full Text: PDF
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献