Numerical Simulation of the Stability of Rock Mass around Large Underground Cavern

Author:

Kien Dang Van,Anh Do Ngoc,Thai Do Ngoc

Abstract

Geotechnical problems are complicated to the extent and cannot be expected in other areas since non-uniformities of existing discontinuous, pores in materials and various properties of the components. At present, it is extremely difficult to develop a program for tunnel analysis that considers all complicated factors. However, tunnel analysis has made remarkable growth for the past several years due to the development of numerical analysis method and computer development, given the situation that it was difficult to solve formula of elasticity, viscoelasticity, and plasticity for the dynamic feature of the ground when the constituent laws, yielding conditions of ground materials, geometrical shape and boundary conditions of the structure were simulated in the past. The stability of rock mass around an underground large cavern is the key to the construction of large-scale underground projects. In this paper, the stability analysis was carried out based on those parameters by using 2D FEM RS2 program. The calculated stress and displacements of surrounding rock and rock support by FEM analysis were compared with those allowable values. The pattern of deformation, stress state, and the distribution of plastic areas are analyzed. Finally, the whole stability of surrounding rock mass of underground caverns was evaluated by Rock Science - RS2 software. The calculated axial forces were far below design capacity of rock bolts. The strong rock mass strength and high horizontal to vertical stress ratio enhanced safe working conditions throughout the excavation period. Thus wide span caverns and the system of caverns could be stability excavated sedimentary rock during the underground cavern and the system of caverns excavation by blasting method. The new method provides a reliable way to analyze the stability of the caverns and the system of caverns and also will help to design or optimize the subsequent support. Doi: 10.28991/CEJ-2022-08-01-06 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3