Creation and Spatial Analysis of 3D City Modeling based on GIS Data

Author:

Khayyal Heba K.,Zeidan Zaki M.,Beshr Ashraf A. A.

Abstract

The 3D city model is one of the crucial topics that are still under analysis by many engineers and programmers because of the great advancements in data acquisition technologies and 3D computer graphics programming. It is one of the best visualization methods for representing reality. This paper presents different techniques for the creation and spatial analysis of 3D city modeling based on Geographical Information System (GIS) technology using free data sources. To achieve that goal, the Mansoura University campus, located in Mansoura city, Egypt, was chosen as a case study. The minimum data requirements to generate a 3D city model are the terrain, 2D spatial features such as buildings, landscape area and street networks. Moreover, building height is an important attribute in the 3D extrusion process. The main challenge during the creation process is the dearth of accurate free datasets, and the time-consuming editing. Therefore, different data sources are used in this study to evaluate their accuracy and find suitable applications which can use the generated 3D model. Meanwhile, an accurate data source obtained using the traditional survey methods is used for the validation purpose. First, the terrain was obtained from a digital elevation model (DEM) and compared with grid leveling measurements. Second, 2D data were obtained from: the manual digitization from (30 cm) high-resolution imagery, and deep learning structure algorithms to detect the 2D features automatically using an object instance segmentation model and compared the results with the total station survey observations. Different techniques are used to investigate and evaluate the accuracy of these data sources. The procedural modeling technique is applied to generate the 3D city model. TensorFlow & Keras frameworks (Python APIs) were used in this paper; moreover, global mapper, ArcGIS Pro, QGIS and CityEngine software were used. The precision metrics from the trained deep learning model were 0.78 for buildings, 0.62 for streets and 0.89 for landscape areas. Despite, the manual digitizing results are better than the results from deep learning, but the extracted features accuracy is accepted and can be used in the creation process in the cases not require a highly accurate 3D model. The flood impact scenario is simulated as an application of spatial analysis on the generated 3D city model. Doi: 10.28991/CEJ-2022-08-01-08 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3