Design of a Biomimetic BLDC Driven Robotic Arm for Teleoperation & Biomedical Applications

Author:

Procter Stuart,Secco Emanuele LindoORCID

Abstract

For many years, robotics research and development has been held back from the high-power AC motors of industrial automation, locked to low-power, bulky Stepper motors and simple DC Servos. As of a few years ago, Brushless DC motors started seeing use in high-end quadrupedal designs such as Boston Dynamics Cheetah, and Spot. Whilst these used expensive, proprietary control systems that were closed source and out of the reach of many small-scale researchers, developers, and hobbyists, they did demonstrate the potential of a motor-class previously only commonly thought suitable for high-RPM applications like drones and quadcopters. In 2016, an open-source custom driver platform named ODrive was started, which is now in its 3rd iteration. As of 2021, it provides all of the basic hardware and software needed to control 2 closed loop Brushless DC motors per board, using off the shelf encoders and at a reasonable, hobbyist level price point. This technology is, on paper, a huge development for plenty of low-budget robotics research applications. In this project, we design, build, and evaluate a 4 DOF robotic arm using 4 BLDC motors with ODrive control, using 3D printed parts and other components available at a low price point. This arm will be used in the future for testing tele-operative control and so it is designed to be biomimetic, modelled at 2/3 scale with similar proportions and motion capabilities to a real human arm to the elbow. The extremely small, cheap, and lightweight motors selected for this project are shown to output superior speed and torque to stepper motors multiple times their size and weight, albeit at a very significant power draw requirement. The speed and power of a BLDC through a high reduction gearbox allows extremely fast and responsive movement such that it can easily execute complex movements easily in pace with a human arm. Doi: 10.28991/HEF-2021-02-04-03 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3