Experimental Study on Ultimate Strength of Steel Tube Column Filled with Reactive Powder Concrete

Author:

Al-Abbas Bahaa,Abdul Rasoul Zainab M.R.,Hasan Dhafer,Rasheed Sajjad E.

Abstract

Composite concrete Filled Tubular Steel (CFT) members, which have excellent deformability due to the well-known confined and constrained interaction between steel tube and concrete, have largely been utilized as bridge piers or columns in high-rise buildings, resulting in increased strength and decreased column size. This study examined the experimental performance of steel tube columns filled with reactive powder concrete (RPC) under axial compression. Three sets of columns were used in the experiment, each with variations in shape (square, rectangular, and circular), length-to-diameter ratio, and compressive strength of the RPC. The first set consisted of five columns, while the second and third sets each had seven columns with three different lengths (750 mm, 600 mm, and 450 mm) and two different compressive strengths (54 and 92 MPa). A new numerical model was developed to calculate the ultimate failure load of the columns by considering factors such as the yield strength of steel, the compressive strength of concrete, the column shape, and the ratio of concrete to steel. This model was validated by comparing the results obtained from the experiments to those predicted by the model, as well as by designing equations from various codes. The results showed that the proposed numerical model accurately predicted the ultimate failure load for columns filled with different types of concrete, especially for RPC, while maintaining conservatism compared to the ACI, AISC, and EN codes equations. Doi: 10.28991/CEJ-2023-09-06-04 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3