Modeling Trip-generation and Distribution using Census, Partially Correct Household Data, and GIS

Author:

Anand Akash,George Varghese

Abstract

The efficiencies of urban transport systems in several cities are drastically affected due to difficulties imposed by rapid urbanization and the proliferation of private modes of transport. The conventional four-stage travel demand modeling approach provides an ideal platform to formulate strategies to rectify problems in urban transport. Trip generation is the first stage in this exercise (where trip production and trip attractions are modelled), followed by trip distribution in the second stage. The present work related to the development of models for trip generation and trip distribution necessitated the use of census data related to the number of households in each zone since the available revealed preference (RP) data compiled based on household interview surveys was partially incorrect. A review of the literature indicated that studies on the use of sparsely available and partially inaccurate data such as revealed preference and zone-specific secondary data on trip generation and trip distribution were limited. In the present study, the use of the initial trip generation regression models developed based on existing household survey data resulted in prediction errors ranging between 26% and 32%. Modeling efforts after applying corrections to zone-specific characteristics based on secondary data and the use of trip rate per household later resulted in prediction errors of less than ±5%. In the latter phase of work related to trip distribution modeling, a log-linear regression model was developed based on a smaller refined set of the revealed preference data obtained by eliminating erroneous data in a stage-wise manner. The use of the calibrated and validated model ensured that the errors in predicted trip frequencies were less than 0.6%. Here, the information on the inter-zonal aerial distances that formed part of the trip distribution model was obtained using GIS approaches that employed the moment area method, which considered the intensity of land use at the sub-zone level. The combined strategy incorporates the use of GIS-based approaches to determine inter-zonal aerial distances, and the use of the refined relationship between trip interchanges and the inter-zonal aerial distances in the development of a reliable log-linear regression model for trip distribution contributed towards attaining higher accuracies in travel demand estimation. The modeling approaches described herein do not rely on the use of sophisticated technology, and time-consuming data processing. The study will provide the basic framework for transport planners to formulate better strategies for travel demand modeling where available data is noisy and less reliable. Doi: 10.28991/CEJ-2022-08-09-013 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3