Comparison of Methods for Computing Highly Accurate Daily GNSS Positions

Author:

Kuzikov SergeyORCID,Kenigsberg D. V.,Salamatina Yuliya,Prokhorov O. A.

Abstract

In Central Asia, the level of geodynamic displacements of the Earth's crust does not significantly exceed the accuracy of their measurement methods. Therefore, we need to choose the most accurate methods of calculating coordinates for cosmogeodetic stations. In this work, based on the data of 8 days of GPS measurements at 10 stations, 7 sets of average daily geocentric XYZ coordinates were calculated using different methods. To determine the positions, we used 3 calculation methods in the GAMIT/GLOBK program, 2 methods in the Bernese GNSS software, and 2 web services. To estimate the differences between 7 coordinate sets, we used parameters based on the Euclidean distance between these coordinate samples. The difference analysis of all pair combinations for 7 coordinate sets was carried out by 3D radius vectors, individual coordinate axes, and individual observation stations. The calculations showed that the positioning accuracy and precision depended not only on the coordinate calculation method but also on the selected reference frame. Methods using the international terrestrial reference frame (ITRF) provide station positions with regular deviations of <2 mm and individual deviations up to 5 cm. Methods using the regional and "point" reference frames have regular discrepancies for individual coordinates up to 2 cm and maximum deviations up to 1 m. Converting XYZ coordinates to UVW with the local reference frame reduces the difference between UVW sets by at least 25%. Due to the spatial orientation relative to the studied stations, the X (U) coordinate is reproduced 2-3 times with smaller deviations than other coordinates. The average deviation level of coordinate sets can be an indicator of the quality of conditions for receiving a GNSS signal at one station. We have identified the station group that has a coordinate deviation level several times lower than other stations. Doi: 10.28991/CEJ-2023-09-02-04 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3