Selecting the Safety and Cost Optimized Geo-Stabilization Technique for Soft Clay Slopes

Author:

Onyelowe Kennedy C.,Ebid Ahmed M.ORCID,Mahdi Hisham A.,Baldovino Jair A.

Abstract

Slope failure poses a serious threat to the built environment as it is currently one of the fundamental contributors to climate change fears across the world, and this threatens the environmental goals of the United Nations Sustainable Development Goals (UNSDGs) for the year 2050. In this research paper, an optimized geo-stabilization numerical model has been developed with a Plaxis 2D code under safety and cost optimization considerations for a 37 m high slope embankment located on a soft clay watershed with an infinite extension. The site was prepared with four monitoring wells installed at 2.5 m, 7.5 m, 12.5 m, and 21.5 m from the foot of the slope to measure the water level conditions, and samples were collected and tested in the laboratory to determine the hydraulic and shear strength and modulus of the soil. Seven (7) different simulation alternatives were considered in terms of the model solutions to be deployed under dry and wet states, which were slope steep (angle) reduction (Alt-1), dewatering (Alt-2), jet grouting (Alt-3), jet grouting/dewatering (Alt-4), slope reduction/jet grouting (Alt-5), slope reduction/dewatering (Alt-6), and slope reduction/jet grouting/dewatering (Alt-7). The finite element model implementation of the alternatives showed that Alt-2, Alt-3, and Alt-4 had FOS of less than 1.5 and were omitted because their stability considerations did not meet the requirements for the normal operating conditions of a slope and also the short-term and long-term stability conditions according to the literature. Alternatives 1, 5, 6, and 7 with FOS above 1.5 were selected for further optimization considerations. Economic and sustainability factors were selected and considered based on the cost in line with current average market prices, constructability, reliability, and the environmental impact needed to achieve the required earthwork, jet grouting, dewatering, and selected combinations. Finally, the Alt-1 (FOS = 1.505), though not the cheapest, was selected as the optimal choice in terms of reliability, constructability, and environmental impact. However, Alt-6 (FOS = 1.520) and Alt-7 (FOS = 1.508) are the most economical but ranked low in reliability and environmental impact considerations. Doi: 10.28991/CEJ-2023-09-02-015 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3