Constitutive Relations for Modelling Macro Synthetic Fiber Reinforced Concrete

Author:

Al-Sebai Humam,Al-Sadoon Zaid A.ORCID,Altoubat Salah,Maalej Mohamed

Abstract

The increasing utilization of Fiber-Reinforced Concrete (FRC) within the construction industry signifies a pivotal shift towards enhancing structural integrity and durability. Despite the predominant use of steel fibers, exploring macro synthetic fibers has gained momentum due to their potential to address critical challenges, such as workability reduction and corrosion resistance in FRC, without markedly affecting its structural performance. Among the forefronts of FRC research is developing an accurate constitutive model encompassing the diverse behavior of fibers, particularly synthetic ones. This discrepancy necessitates a distinct constitutive model for synthetic fibers to precisely characterize their tensile post-cracking behavior and regulate their design specifications. In this research, a preliminary constitutive model is derived through an inverse analysis procedure employing a Generalized Reduced Gradient (GRG) optimization method to the load-displacement results of the experimental testing of twenty ASTM C1609 beam samples. The results of the inverse analysis are used to correlate the ASTM C1609 residual flexural tensile strength parameters, fL/600 and fL/150to the stress-strain points defining the uniaxial tensile curve of macro-synthetic fibers, achieving coefficients of determination exceeding 98.5%. The model is statistically confirmed to be a valid constitutive relation for macro-synthetic fibers via successfully representing the post-cracking load-deflection behavior of standardized concrete beams, thereby outperforming traditional constitutive models in simulating the post-cracking behavior of FRC. Moreover, the model demonstrates robust predictive capabilities for the load-deflection curve of externally standardized samples, showcasing its potential for broader application in FRC design and analysis. Doi: 10.28991/CEJ-2024-010-06-06 Full Text: PDF

Publisher

Ital Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3