Predicting Project Success in Residential Building Projects (RBPs) using Artificial Neural Networks (ANNs)

Author:

Youneszadeh Hessam,Ardeshir Abdollah,Sebt Mohammad Hassan

Abstract

Due to the urban population’s growth and increasing demand for the renewal of old houses, the successful completion of Residential Building Projects (RBPs) has great socioeconomic importance. This study aims to propose a framework to predict the success of RBPs in the construction phase. Therefore, a 3-step method was applied: (1) Identifying and ranking Critical Success Factors (CSFs) involving in RBPs using the Delphi method, (2) Identifying and selecting success criteria and defining the Project Success Index (PSI), and (3) Developing an ANN model to predict the success of RBPs according to the status of CSFs during the construction phase. The model was trained and tested using the data extracted from 121 RBPs in Tehran. The main findings of this study were a prioritized list of most influential success criteria and an efficient ANN model as a Decision Support System (DSS) in RBPs to monitor the projects in advance and take necessary corrective actions. Compared with previous studies on the success assessment of projects, this study is more focused on providing an applicable method for predicting the success of RBPs. Doi: 10.28991/cej-2020-03091612 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3