New Approach for Simulating Reinforced Concrete Walls in Quasi-static Loading

Author:

Benakli S.ORCID,Bouafia Y.,Oudjene M.,Benyahi K.,Hamri A.

Abstract

The main objective of this article is to apply a simplified model to simulate the overall behavior of a reinforced concrete wall without the need to explicitly represent the reinforcing bars in the model nor the progressive degradations of the concrete in tension. The model takes into account the fictitious laws of the material, in order to estimate the capacity of the studied model and its performance to simulate the complex behavior of concrete. The law of the fictitious behavior of reinforced concrete tie rods is based on the shape of the adhesion curve between steel and concrete. Relationships covering the cracking stage up to the elastic limit of steel are proposed according to the properties of concrete and steel materials, the percentage of steel. An analytical computational model is then implemented in the Matlab programming language. Necessary transformations for the integration of the law of fictitious average behavior of steel in the Abaqus software were carried out thus making it possible to make a considerable advance from the point of view of validation of the developed law. The general formulation of the tension law applies to sections where the reinforcements are distributed so that the resistance of the entire section is mobilized. Hence the need to introduce an effective area around the rebars for the application of the fictitious tension law to reinforced concrete walls. Numerical simulations have been validated using an example of reinforced concrete wall subjected to a quasi-static loading. Load-displacement responses are compared and the numerical results approaches well the experimental one. By using the law of the fictitious diagram of the concrete and by defining the effective tensile zone of the wall, the model makes it possible to save a considerable time of calculation compared to a traditional calculation in EF on Abaqus. Doi: 10.28991/cej-2020-03091622 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3