Effect of Modulus of Bituminous Layers and Utilization of Capping Layer on Weak Pavement Subgrades

Author:

Alzaim Muhammed,Gedik Abdulgazi,Lav Abdullah Hilmi

Abstract

The majority of the world’s highways consist of a flexible pavement commonly built of several layers (both asphaltic and granular) that have been laid over a pavement foundation known as the subgrade. A subgrade that is considered to be of a satisfying bearing capacity is expected to restrict not only the immediate distresses occurring during the construction phases, but also later deformations appearing during the service life of the pavement as it subjected to traffic loads. If the subgrade proves to be structurally weak, the highway’s flexible pavement can be supported by adding such modifications as a capping layer, which serves to greatly reduce the stress being applied to the pavement. This study aims to further our knowledge about maximum pavement functionality by investigating those parameters considered crucial to pavement design: the correspondence of material properties, the number of layers, and the layer thickness. These parameters were analyzed to determine the best performing composition, while also considering the financial aspects of road construction. To achieve such an aim, we chose to use KENLAYER software to assist us in determining the design of a flexible pavement in line with a specific Equivalent Single Axle Load (ESAL). The KENLAYER configuration provided us with the required ESAL targets for specific design lives. We next calculated the relative costs of these targets and chose those that proved to be most cost-effective and economical. The results indicate that when considering feasible pavements to meet a design of high ESAL applications, those utilizing high modulus asphaltic materials are most suitable for subgrade CBR of at least 3%, while weaker subgrade constructions must be provided with a capping layer.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3