Towards Energy Efficient Onsite Wastewater Treatment

Author:

Mirra RenataORCID,Ribarov Christian,Valchev Dobril,Ribarova Irina

Abstract

The objective of this work is to demonstrate that some weaknesses of the onsite packaged WWTP associated with high operational costs and energy inefficiency could be overcome by improved management. The research methodology consists of series of batch studies with sludge from municipal or onsite WWTP, which simulate different working regimes of the onsite WWTPs – daily operation, toilet flushing and dishwasher machine. A simple classical tool, Oxygen Uptake Rate (OUR) is used to prove the hypothesis that regardless the specificity of the onsite WWTPs, namely the irregularity of the flow and load, three parameters follow similar increasing and decreasing trends – inflow rate, inflow pollution load and oxygen demand in the reactor. The literature review has not shown research publication about applicability of (OUR) for management of onsite WWTPs, but has shown experience and knowledge with municipal WWTPs, which were utilized in our study. The results prove that when there is no wastewater generation in the household, the (OUR) in the reactor is very low, 0.0007 to 0.0015 mg/l.s, thus do not require high oxygen supply. However, when wastewater flushes into the onsite WWTP, the oxygen demand increases rapidly and (OUR) reaches the range of 0.0040 to 0.0063 mg/l.s depending on the type and the quantity of the incoming substrate (pollution load). These results, if verified in filed experiments will enable optimization of the energy use during onsite WWTP operation.  The suggestion is that the oxygen supply in the reactor should be adjusted according to the demand, respectively proportional to the inflow rate. In addition to the benefit of saving energy, the comprehensive sensors for dissolved oxygen monitoring, which require qualified maintenance could be avoided and replaced by simple sensors for level, which are anyway part of the equipment of most of the onsite packaged WWTP.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3