Numerical Study on RC Multilayer Perforation with Application to GA-BP Neural Network Investigation

Author:

Sun Weiwei,Shi Ze,Chen BingCheng,Feng Jun

Abstract

The finite element model of projectile penetrating multi-layered reinforced concrete target was established via LS-DYNA solver. The penetration model was validated with the test data in terms of residual velocity and deflection angle.  Parametric analyses were carried out through the verified penetration model. Seven influential factors for penetration conditions, including the initial velocity of projectile, initial angle of attack of projectile, initial dip angle of projectile, the first layer thickness of concrete target, the residual layer thickness of concrete target, target distance and the layer number of concrete target, were put emphasis on further analysis. Furthermore, the influence of foregoing factors on residual velocity and deflection angle of projectile were numerically obtained and discussed. Based on genetic algorithm, the BP neural network model was trained by 263 sets of data obtained from the parametric analyses, whereby the prediction models of residual velocity and attitude angle of projectile under different penetration conditions were achieved. The error between the prediction data obtained by this model and the reserved 13 sets of test data is found to be negligible.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3