Development of Filters with Minimal Hydraulic Resistance for Underground Water Intakes

Author:

Akulshin A. A.,Bredikhina N. V.,Akulshin An. A.,Aksenteva I. Y.,Ermakova N. P.

Abstract

The development of modern structures of water wells filtering equipment with enhanced performance characteristics is a vital task. The purpose of this work was to create filters for taking water from underground sources that have high performance, long service life, quickly and economically replace or repair in case of performance loss. The selection of the filter device must be made taking into account all the geological features of the aquifers, the performance characteristics of the filter devices and the size of the future structure. Filter equipment designs for water intake wells have been developed in this study. These filters have low hydraulic resistance, high performance and are easy to repair. This article presents the dependency of flow inside the receiving part of the well, the dependence of filter resistance at various forms of the cross section of the filter wire and the selected optimal section. The paper proposes a method for selecting the optimal cross-section of the filter wire used in the manufacture of a water well filter. The proposed structures of easy-to-remove well filters with increased productivity allow replacing the sealed well filter with a new one easily, reducing capital and operating costs, and increasing the inter-repair periods of their operation. Based on the presented method, examples are given for selecting the parameters of the filter wire cross-section. The above calculations showed that the use of the hydraulic resistance criterion at the design stage of underground water intakes can significantly reduce the cost of well construction. Studies have found that the minimum hydraulic resistance to ensure maximum filter performance is achieved when using filter wire teardrop and elliptical shapes.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3